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Abstract. We consider the extended nonlinear Schrödinger (ENLS) equation which governs the
propagation of nonlinear optical fields in a fibre with higher-order effects such as higher-order
dispersion and self-steepening. We show that the ENLS equation does not pass the Painlevé
test. Similarly, we claim that the coupled ENLS equations and N -coupled ENLS equations which
govern the simultaneous propagation of two and more nonlinear fields in optical fibres are also not
integrable from the Painlevé analysis point of view.

It is well known that the dynamics of nonlinear wave propagation in a single-mode fibre is
governed by the famous nonlinear Schrödinger (NLS) equation [1–3]. For the transmission of
more channels, time division multiplexing is normally used, which can be effectively achieved
by the propagation of ultrashort pulses. Propagation of short pulses induces higher-order effects
such as higher-order dispersion, self-steepening and stimulated inelastic scattering [2,3]. With
the effects of higher-order dispersion and self-steepening, the wave propagation is governed
by the extended NLS (ENLS) equation of the form [4]

iqz − k′′

2
qtt + β|q|2q − i

k′′′

6
qttt + iγ (|q|2q)t = 0 (1)

where q is the slowly varying envelope of the axial field, k′′, β, k′′′ and γ are group velocity
dispersion, self-phase modulation, higher-order dispersion and self-steepening parameters
respectively, and subscripts z and t denote spatial and temporal partial derivatives.

Liu and Wang [4] considered the above form of ENLS equation and derived the exact
one- and two-soliton solutions using the Hirota bilinear method [5] under the conditions
3k′′γ = βk′′′ and k′′γ = βk′′′. In [6], coupled ENLS equations of the following form for
the propagation of two fields simultaneously are considered:

iq1z − k′′

2
q1t t + β[(x|q1|2 + y|q2|2)q1] − i

k′′′

6
q1t t t + iγ [(x|q1|2 + y|q2|2)q1]t = 0

iq2z − k′′

2
q2t t + β[(y|q1|2 + x|q2|2)q2] − i

k′′′

6
q2t t t + iγ [(y|q1|2 + x|q2|2)q2]t = 0

(2)

where x and y are the coupling coefficients between the self-phase modulation and the cross
phase modulation. In [6], under the condition k′′γ = βk′′′, one- and two-soliton solutions for
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the coupled ENLS equations are derived using the Hirota bilinear method (for x = y = 1).
In this paper, we show that the ENLS equation (1) does not pass the Painlevé test. Finally,
we claim that the coupled ENLS equations (2) and N -coupled ENLS equations are also not
integrable from the Painlevé singularity analysis point of view.

A new set of variables a(=q) and b(=q∗) are introduced for the purpose of Painlevé
singularity structure analysis [7]. Thus, using equation (1), a and b can be written as

iaz − k′′

2
att + βa2b − i

k′′′

6
attt + iγ (a2b)t = 0

−ibz − k′′

2
btt + βb2a + i

k′′′

6
bttt − iγ (b2a)t = 0.

(3)

Generalized Laurent series expansions of a and b are

a = φα1

∞∑
j=0

aj (z, t)φ
j

b = φα2

∞∑
j=0

bj (z, t)φ
j

(4)

with a0, b0 �= 0, where α1 and α2 are negative integers, aj and bj are sets of expansion
coefficients which are analytic in the neighbourhood of the noncharacteristic singular manifold.
Looking at leading order, a ≈ a0φ

α1 and b ≈ b0φ
α2 are substituted in equation (3) and upon

balancing dominant terms, the following results are obtained:

α1 = α2 = −1 a0b0 = k′′′

3γ
φ2

t . (5)

Substituting the full Laurent series and considering leading-order terms alone, we obtain the
following equation:(

A Ba2
0

−Bb2
0 −A

) (
aj

bj

)
= 0 (6)

where

A = −k′′′

6
(j − 1)(j − 2)(j − 3)φ3

t + 2γ (j − 3)a0b0φt

B = γ (j − 3)φt .

On solving equation (6), the resonance values are found to be

j = −1, 0, 3, 3, 3, 4. (7)

The resonance value at j = −1 represents the arbitrariness of the singularity manifold φ(z, t),
while the resonance at j = 0 is associated with the arbitrariness of the functions a0 and b0 (as
seen in equation (5)). Degeneracy of the resonance value at j = 3, repeating three times as
in equation (7), claims three arbitrary functions on the functions a3 and b3. It is obvious that
there cannot be three arbitrary functions over two functions. From this, it is very clear that
the ENLS equation (1) does not pass the Painlevé test. So, from the Painlevé analysis point
of view, it is clear that the ENLS equation is not integrable. However, it has exact one- and
two-soliton solutions through the Hirota bilinear method [4]. It is a known fact that the Hirota
bilinear method usually generates one- and two-soliton solutions and does not give any idea
about integrability. For nonintegrable equations like the ENLS equation, the Hirota bilinear
method only gives trouble during the calculation of higher-soliton solutions.

Now, let us discuss the integrability of the coupled ENLS equations (2) and N -coupled
ENLS equations. Coupled ENLS equations (2) and N -coupled ENLS equations can be reduced
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to the ENLS equation (1) for q1 = q2 . . . qN = q. As the ENLS equation (1) does not pass the
Painlevé test, we claim that the coupled ENLS equations (2) and N -coupled ENLS equations
are not integrable from the Painlevé analysis point of view. But the coupled ENLS equations (2)
have exact one- and two-soliton solutions through the Hirota bilinear method [6]. We are sure
that one can also generate the one- and two-soliton solutions using the Hirota bilinear method
for the N -coupled ENLS equations.

In the second part of [6], the authors have considered a different kind of coupled higher-
order NLS equation which includes the effect of delayed nonlinear response and derived
the exact one- and two-soliton solutions, once again using the Hirota bilinear method. It is
interesting to note that coupled equations pass the Painlevé test [8] and for the conformation of
complete integrability, it has the linear eigenvalue problem and associated soliton solutions [9].

In this paper, we have reported that the ENLS equation and its coupled forms do not pass
the Painlevé test. So, we conclude that the ENLS equation and its coupled forms are not
integrable.
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